4/2051	Press Copy	4305/M
Total No. of Sheets used <u>02</u>	Total No. of Questions	<u>9</u>
Subject <u>Statistics</u>	Paper	<u>II</u>
Title of the Paper Probabil	ity Theory-II	
Time allowed3 HrsMaximum	n Marks <u>36</u> Minimum Pass M	1arks

Instructions for the Candidates

Candidates are required to attempt five questions in all, selecting two questions from each sections A and B and the compulsory question of section C. All questions of sections A and B will carry 5 marks each where as section C will carry 16 marks.

Use of scientific non-programmable calculator is allowed.

Section-A

- 1. (a) Show that Binomial distribution is a limiting form of Hyper-Geometric distribution under certain conditions.
 - (b) A deck of cards contains 20 cards: 6 red cards and 14 black cards. 5 cards are drawn randomly without replacement. What is the probability that exactly 4 red cards are drawn?
- 2. (a) Show that geometric distribution lacks memory.
 - (b) Define Negative Binomial distribution. Find moment generating function. Hence find mean and variance of the distribution
- 3. Prove that Normal distribution is a limiting form of a Binomial distribution.
- 4. (a) Derive the p.d.f. of Chi-square distribution.
 - (b) If X has a uniform distribution in [0,1], find the distribution of $-2 \log X$. Identify the distribution also.

Section-B

- 5. (a) Show that if X_1 and X_2 are standard normal variates with correlation coefficient ρ between them, then the correlation coefficient between X_1^2 and X_2^2 is given by ρ^2 .

 (b) Let X and Y have bivariate normal distribution with parameters: $\mu_x = 4, \ \mu_y = 8, \ \sigma_x^2 = 1, \ \sigma_y^2 = 25 \ \text{and} \ Corr(X,Y) = \rho \ . \text{ Find } P(X+Y) \leq 15 \ \text{if } \rho = 0 \ .$
- 6. Define bivariate normal distribution. If X and Y follow bivariate normal distribution, find the conditional distribution of Y given X.

- 7. (a) State and prove Chebychev's inequality.
 - (b) Use Chebychev's inequality to determine how many times an unbiased dice must be thrown in order that the probability will be at-least 0.80 that the ratio of the observed number of even to the number of odds will be between 0.4 and 0.6.
- 8. (a) Let $X_1, X_2, ..., X_n, ...$ be independent Bernoulli variates such that: $P(X_k = 1) = p_k, P(X_k = 0) = q_k = (1 p_k), k = 1, 2, ..., n, ...$

Examine whether sequence $\left\{\sum_{i=1}^{n} X_{i}\right\}$ follows central limit theorem.

(b) If $X_1, X_2, ...$ be i.i.d. Poisson variates with parameters λ . Use CLT to estimate $P(120 \le S_n \le 160)$, where $S_n = X_1 + X_2 + ... + X_n$: $\lambda = 2$ and n = 75.

Section-C

- 9. (i) If $X \sim B(n, p)$, show that $Cov.\left(\frac{X}{n}, \frac{n-X}{n}\right) = -\frac{pq}{n}$.
 - (ii) Find moment generating function of Geometric distribution.
 - (iii) State and prove additive property of Chi-square variates.
 - (iv) Define Beta distribution of second kind. Find its harmonic mean.
 - (v) State the important properties of Normal distribution.
 - (vi) Let $(X,Y) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Prove that aX + bY, $a \neq 0, b \neq 0$ is also a normal variate.
 - (vii) How large a sample must be taken in order that the probability will be at least 0.95 that \overline{X}_n will be within 0.5 of μ (μ is unknown and $\sigma = 1$).
 - (viii) State weak law of large numbers.

4305MH