AS-2051 **CALCULUS-II PAPER -IV SEMESTER-II**

M:M: 40

TIME :3 HOURS NOTE : The candidates are required to attempt two questions each from Section A and B Section C will be compulsory.

5167/MH

(3)

(3)

SECTION-A

I(a) Show that
$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} dy = \int_0^1 dy \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} dx$$
.

I(b) Write an equivalent double integral with order of integration

reversed for
$$\int_0^{\sqrt{2}} \int_{-\sqrt{4-2y^2}}^{\sqrt{4-2y^2}} y \, dx \, dy$$
. Hence evaluate the double integral. (3)

II(a) By changing into polar co-ordinates, evaluate $\iint \sqrt{a^2 - x^2 - y^2} dx dy$

- over the circle $x^2 + x^2 \le ax$ in the positive quardrant where a > 0. (3)
- II(b) Find the area enclosed by the parabolas $y^2 = 4ax$ and $\dot{x}^2 = 4ay$, a > 0. (3)

III(a) Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^1 \frac{dz \, dy \, dx}{\sqrt{x^2+y^2}}$$
. (3)

III(b) Show that the entire volume of solid $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{z}{c}\right)^{\frac{2}{3}} = 1$ is $\frac{4\pi abc}{35}$. (3)

IV Find the centre of gravity of a right circular cone of base radius r and (6)

height h with uniform density unity.

SECTION-B

V(a) Let $ec{a}$ and $ec{b}$ be two nom-zero vectors, then prove that $ec{a}$ and $ec{b}$ are perpendicular

if and only if
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
⁽³⁾

V(b) If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$, show that

the three vectors \vec{a} , \vec{b} , \vec{c} are orthogonal in pairs and $|\vec{a}| = |\vec{c}|, |\vec{b}| = 1$ (3)

VI(a) Find equation of plane passing through line of intersection of the planes

$$\vec{r} (\hat{i} + \hat{i} + \hat{k}) = 6 \text{ and } \vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5 \text{ and the point } (1, 1, 1).$$
 (3)

VI(b)Find the equation of the line(vector and cartessian both) which is parallel

To the vector $2\hat{i} - \hat{j} + 3\hat{k}$ and which passes through the point (5, -2, 4)CouldVII State and prove Green's Theorem in a plane.

VIII(a) Verify Stoke's Theorem for $\vec{F} = y\hat{\imath} + z\hat{\jmath} + x\hat{k}$, where S is the upper half

surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. (3)

VIII(b) Apply Divergence theorem, to evaluate $\iint \vec{A} \cdot \vec{n} \, dS$ over the surface

of region bounded by
$$x^2 + y^2 = 4$$
, $z = 0$ and $z = 3$ (3)

SECTION-C

IX(a) Evaluate $\iint \sin \pi (x^2 + y^2) dx dy$ over the circle $x^2 + y^2 \le 1$.

IX(b) Define Moments of Inertia of solid of mass M continuously distributed

with mass density $\mu(x, y, z)$ throughout a region $V \subset \mathbf{R}^3$

IX(c) Evaluate $\iiint (z^5 + z) dx dy dz$ over region

$$V = \{(x, y, z): x^2 + y^2 + z^2 \le 1\}$$

IX(d)Find the moment of inertia of a square region of unit density about

one of its sides, the side being 2a.

IX(e)Find the circulation of $\vec{F} = y\hat{\imath} + z\hat{\jmath} + x\hat{k}$ round the curve C, where

C is the circle $x^2 + y^2 = 1, z = 0$ in xy-plane.

IX(f) Find Find the vector equation of the line passing through the points

A(-1, 0, 2) and B(3, 4, 6)

IX(g) If \vec{a} and \vec{b} are unit vectors, and θ is angle between them, find $\frac{1}{2} |\vec{a} - \vec{b}|$ in terms of θ .

IX(h) Define the flux of a vector point function across a surface.

 $(2 \times 8 = 16)$