PC-5923/MH

B-2051

ALGEBRA-I Paper-IV (Semester-II) (May-18)

Time : Three Hours]

[Maximum Marks : 40

Note : Attempt *two* questions each from Section A and B. Section C will be compulsory.

SECTION – A

I. (a) Show that every square matrix is uniquely expressible as the sum of a symmetric and a skew symmetric matrix.

(b) Express A = $\begin{bmatrix} 1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix. (3+3)

II. (a) Prove that the characteristic books of Skew-Hermitian matrix are either zero or purely imaginary.

5923-MH/00/HHH/3033

[P.T.O.

(b) Diagonalize the matrix,

$$A = \begin{bmatrix} 1 & 3 & 6 \\ -3 & -5 & -6 \\ 3 & 3 & 4 \end{bmatrix}$$
(2+4)

III. (a) Using matrix method, show that the equations,

$$5x + 3y + 7z = 4,$$

$$3x + 26y + 2z = 9,$$

$$7x + 2y + 10z = 5$$

are consistent and solve them.

(b) For
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
, find the value of
 $A^5 + 5A^4 - 6A^3 + 2A^2 - 4A + 7I$
by using Cayley Hamilton theorem. (3+3)

IV. Find Non-Singular matrices P and Q such that PAQ is the normal form for the matrix

$$\begin{bmatrix} 3 & -1 & 2 & 1 \\ 1 & 4 & 6 & 1 \\ 7 & -11 & -6 & 1 \\ 7 & 2 & 12 & 3 \end{bmatrix}.$$
 (6)

SECTION – B

- V. (a) Construct a cubic polynomial f(x) having the properties :
 - (i) f(x) is monic,
 - (ii) f(x) = 0,
 - (iii) f(0) = -8,
 - (iv) Sum of roots of f(x) = 7.
 - (b) Solve $18x^3 + 81x^2 + 21x + 60 = 0$, one root being half the sum of other two. (3+3)
- VI. (a) If α , β , γ are the roots of $x^3 + 3x + 2 = 0$, form an equation whose roots are $(\beta \gamma)^2$, $(\gamma \alpha)^2$ and $(\alpha \beta)^2$.
 - (b) Hence, show that the equation has a pair of imaginary roots. (3+3)
- VII. (a) Solve $x^3 + 3x 14 = 0$ by Cardan's method.
 - (b) Prove that $(a+ib)^{m/n} + (a-ib)^{m/n} = 2(a^2+b^2)^{m/2n}$.

$$\cos\left[\frac{m}{n} \cdot \tan^{-1}\left(\frac{b}{a}\right)\right]. \tag{3+3}$$

VIII. Solve $x^4 - 4x^3 - 4x^2 - 24x + 15 = 0$ by Ferrari's method. (6)

5923-MH/00/HHH/3033 3 [P.T.O.

SECTION – C

(Compulsory Question)

- IX. (a) Show that every invertible matrix has a unique inverse.
 - (b) Prove that rank of matrix and its transpose is equal.
 - (c) Find the quotient and remainder when

 $6x^4 + 11x^3 + 13x^2 - 3x + 27$ is divided by 3x + 4.

- (d) Find the equation whose roots are α₁, α₂, α₃ of equation with sign changed.
- (e) Find the nature of the roots of the equation $x^{5} - 7x^{4} + 6x^{3} + 5x^{2} + 4x - 8 = 0.$
- (f) Find the real and imaginary parts of $\tan h (x + iy)$
- (g) Prove that $i^i = e^{-(4n+1)\pi/2}$.
- (h) State De-MoIver's Theorem. $(8 \times 2 = 16)$