BMH 501: Algebra II

Preponement (Dec-18)

Maximum Marks: 75

Time Allowed: 3 Hours

Note: - Attempt, any two questions each from section-A and section-B. Section-C is compulsory.

Section-A

2×11.25=22.5

- Q.1. (a) If N is a normal subgroup of a group G and $N \cap G' = \{e\}$ then show that $N \subseteq Z(G)$. (b) Show that S_n is not solvable for n > 4.
- O.2. State and prove Schreier's refinement theorem.
- Q.3. a) Prove or disprove that if ring with unity such that $(xy)^3 = x^3y^3$ then R is commutative.
 - b) Verify Jordan Holder theorem for Quaternion group.
- Q.4. Prove that every maximal ideal in a commutative ring with unity is a prime ideal. Also show that converse of this statement is not true.

Section-B

 $2 \times 11.25 = 22.5$

- Q.5. State and prove second theorem of Ring Isomorphism.
- Q.6. Prove that every ring can be embedded in a ring of endomorphism of some additive abelian group.
- Q.7. Prove that every Euclidean Domain is a PID. Also show that the converse of this is not true
- Q.8.(a) Show that every irreducible element of UFD is prime element.
 - (b) Show that $Z[\sqrt{-6}]$ is not UFD.

Section-C

 $3 \times 10 = 30$

Q.9.

- a) Prove that a group G is commutative iff $G' = \{e\}$.
- b) Write down all composition series of cyclic group of order 24.
- c) Distinguish Normal and subnormal series for a group.
- d) The union of two ideals may or may not be an ideal. Justify this statement.
- e) Give an example of a no commutative ring R and an ideal I of R such that quotient R/I is a field.
- f) Show that kernel of a ring homomorphism is an ideal of ring.
- g) Explain Field of quotients and embedding of a ring.
- h) Show that $Z[\sqrt{-2}]$ is an ED.
- i) Show that the element 1+i is irreducible in Z[i].
- j) Find all associates of $\bar{2}$ in ring Z/(8).