5953/ML

5

5

5

5

5

Contel_2

PHD 02: Topology and Algebra

Max. Marks: 50

x-27/2071

Time Allowed: 3 hours

Instructions for Candidates: 1. Candidates are required to attempt one question each from sections A, B, C and D and the entire section E.

2. Use of non programmable scientific calculator is allowed.

Section-A

1. (i) Let $\{Y_{\alpha} : \alpha \in A\}$ be any family of topological spaces. Also let $U_{\alpha} \neq Y_{\alpha}$ be open set in Y_{α} . Prove that $\prod_{\alpha} U_{\alpha}$ is not an open set in $\prod_{\alpha} Y_{\alpha}$.

(ii) Let $A_i, i \in \mathbb{Z}^+$ are connected and $A_1 \supset A_2 \supset \cdots$. Prove that $\bigcap_n A_n$ need not be connected.

2. (i) Prove that infinite product of discrete spaces is always totally disconnected.

(ii) Let $Y = \{(x, y): y = \sin \frac{1}{x}, 0 < x \le 1\}$. Prove that closure of Y is not path-connected.

Section-B

3. (i) Prove that a separable metric space is Lindelof.

(ii) Let $X = \mathbb{R}$ be a space with half ray topology and Y = [0,1] be the space with usual topology. Prove that X and Y are normal spaces but $X \times Y$ is not a normal space.

4. (i) Let X be a completely regular, and C(X) be the set of all bounded continuous real valued functions on X. For each x, f, \in , let $U(x, f, \in) = \{y: |f(x) - f(y)| < \epsilon\}$. Prove that $\{U(x, f, \epsilon): for all f, x, \epsilon > 0\}$ is a sub-bases for the topology of X.

(ii) Prove that the necessary and sufficient condition for a filter f converges to a in X is that there exist a filter g finer than f converging to a.

Section-C

5. Let $G = S_n$, $n \ge 3$ and fix $i \in \{1, 2, ..., n\}$. Let $G_3 = stab(3)$. Use group action to prove that G_3 is a subgroup of G. Find $|G_3|$. Also find Orb(i) and |Orb(i)| for $i \in \{1, 2, ..., n\}$.

6. (i) Let p be a prime and let G be a group of order p^{α} . Prove that G has a subgroup of order p^{β} , for every β , $0 \le \beta \le \alpha$.

(ii) Find the number of groups of order p^3 , p prime, in which every nonidentity element is of order p.

Section-D

5

2

7. (i) If M is a maximal ideal of non-commutative ring R with unity. Then is R/M division ring? Justify.

(ii) Let $R = \{f \mid f : [0,1] \to \mathbb{R}, f \text{ continuous}\}$. Let $M_c = \{f \in R \mid f(c) = 0, c \in [0,1]$. Prove that M_c is a maximal ideal of R and if M is any maximal ideal of R then there exist $c \in [0,1]$ such that $M = M_c$.

- Define fundamental theorem for finite Abelian groups. Does it imply the converse of Lagrange's theorem in general? If not, Explain for which groups the above statement is true(with proof).
- Section-E
 10

 9. (i) Find $Aut(\mathbb{Z}_{11937})$.
 2

 (ii) Find a prime and maximal ideal (each) of ring $\mathbb{Z}_{100}[x]$.
 2

 (iii) Find all groups (up to isomorphism) of order 69.
 2

 (iv) Give an example of a normal non-regular space.
 2

 (v) Prove that $\prod A_{\alpha}$ is dense in $\prod Y_{\alpha}$ if and only if each A_{α} is dense in Y_{α} where $A_{\alpha} \subset Y_{\alpha}$.

5957/ML