Basic Electronics Engineering-101

Sem-I

Pro-Ponement

Syll-Dec-2015

Time: 3hrs

M.M.-50

Note: Attempt any three questions from section A and any three questions from section B: All questions of Section C are compulsory

Section A

QI. Calculate the current through 40Ω resistor connected across arm BD in Wheatstone bridge shown in figure below using Theorem.

- QII. Explain the step voltage response of RL series circuit.
- QIII. Prove that for maximum power transfer theorem, Load resistance(R_L) is equal to Thevenin Resistance(R_{th}).
- QIV. Derive an expression for voltage, current and power relations in a balanced 3-Phase delta connected Load. Also draw it's Phasor diagram
- QV. A series RLC circuit with R=100 Ω and L=0.6H results in a leading Phase of 60 degree at a frequency of 40Hz. Find the resonance frequency of circuit.

(3x5)

Section B

- QVI Describe the ideal and Actual transformer ON-LOAD with phasor diagram.
- QVII Discuss in detail the working principle and construction of DC Motor.
- QVIII Explain the characteristic of DC shunt motor. Also explain it's application.
- QIX How Short circuit test is performed on the transformer? Draw it's set up and discuss the results obtained from the test.

QX What is the efficiency of a transformer? Derive the condition for maximum efficiency.

(3x5)

Section C

QXI

- a) State torque equation of DC Motor
- b) State Norton's Theorem
- c) What do you understand by Power factor of a circuit?
- d) What is the role of commutator in DC Motor?
- e) Why transformer can't work on DC voltage?
- f) The synchronous speed of induction Motor is 1500rpm and rotor speed is 1400rpm. Find slip
- g) Define Kirchoff's current law
- h) Why are domestic appliances are connected in parallel?
- i) Draw the Phasor diagram of purely inductive circuit for current and voltage
- j) Write down the characteristic of ideal transformer

(2x10)