AS-2051 ANALY TIC GEOMETRY -VI SEMESTER -II

TIME :3 HOURS

M:M: 40

NOTE : The candidates are required to attempt two questions each from Section A and B Section C will be compulsory .

708/MH

(6)

(6)

(3)

SECTION-A

Final race the parabola
$$x^2 - 4xy + 4y^2 + 10x - 8y + 13 = 0$$
. Also find the vertex

directrix and the focus.

II Define the director circle of a conic and find the equation of the director circle of the

conic
$$\frac{t}{r} = 1 + e \cos \theta$$
.

III(a) Prove that the centre of the conic section $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

is
$$\left(\frac{hf-bg}{ab-h^2}, \frac{gh-af}{ab-h^2}\right)$$
. (3)

III(b) Find center and radius of circle $x^2 + 2xy \cos \omega + y^2 - 2gx - 2fy = 0$, axis being inclined at *an angle* ω .

IV(a) The length of perpendicular drawn from point (x_1, y_1) to the line ax + by + c = 0

referred to the axis inclined at an angle
$$\omega$$
 is $\frac{|(a_1x+b_1y+c_1)\sin\omega|}{\sqrt{a^2+b^2-2ab\cos\omega}}$. (3)

IV(b) Prove that the angle between the lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$. (3)

s
$$\tan^{-1}\left(\frac{(m_1-m_2)\sin\omega}{1+(m_1+m_2)\cos\omega+m_1m_2}\right)$$
, where ω is the angle between the axes. (3)

SECTION-B

V. A sphere of constant radius r passes through the origin O and cut the axes in A, B, C.

Prove that the locus of the foot of perpendicular line from O to the plane ABC is

given by
$$(x^2 + y^2 + z^2)^2(x^{-2} + y^{-2} + z^{-2}) = 4r^2$$
 (6)

VI (a). Tangent plane at any point of sphere $x^2 + y^2 + z^2 = r^2$ meets the coordinate

axes in A, B and C. show that locus of point of intersection of planes drawn

parallel to coordinate planes is the surface $x^{-2} + y^{-2} + z^{-2} = r^{-2}$. (3)

VI(b). Find equation of sphere which touches the plane 3x + 2y - z + 2 = 0 at point

P(1, -2, 1) and also cut orthogonally the sphere $x^2 + y^2 + z^2 - 4x + 6y + 4 = 0.$ (3)

VII(a). If θ is the semi-vertical angle of a right circular cone which passes through the lines

OX, OY and x = y = z, show that $\cos \theta = (9 - 4\sqrt{3})^{-(\frac{1}{2})}$

(3) Contel VII(b). Prove that the plane x + y + z = 0 cuts the cone ayz + bzx + cxy = 0

in perpendicular lines if a + b + c = 0

VIII(a). Find equation of right circular cylinder whose guiding curve is the circle

passing through the points(2,0,0), (0,2,0), (0,0,2).

VIII(b). Prove that enveloping cylinder of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ with generators

parallel to line $\frac{x}{0} = \frac{y}{\pm \sqrt{a^2 - b^2}} = \frac{z}{c}$ meet the XY plane in a circle.

SECTION-C

IX(a) Prove that the line $\frac{l}{r} = A \cos \theta + B \sin \theta$ will touch the conic $\frac{l}{r} = 1 + e \cos \theta$ If $(A - e)^2 + B^2 = 1$.

IX(b) If the tangent and normal at a point P of a conic meet the axis in T and G, then prove that $\frac{1}{SG} - \frac{1}{ST}$ is constant, where S is the focus of the conic.

IX(c)I f the axes are inclined at an angle ω , then prove that distance between the points

 (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + 2(x_2 - x_1)(y_2 - y_1) \cos \omega}$ IX(d) Prove that lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$ make equal angle with x-axis

If $m_1 + m_2 + 2m_1m_2\cos\omega = 0$.

IX (e). Prove that the plane x + 2y - z = 4 cuts the sphere $x^2 + y^2 + z^2 - x + z - 2 = 0$ In a circle of radius unity.

IX (f). If a tangent plane to the sphere $x^2 + y^2 + z^2 = p^2$ makes intercepts a, b, c on

the coordinate axes, prove that $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{n^2}$

IX (g) Prove that semi vertical angle of a right circular cone having three mutually perpendicular generators istan⁻¹ $\sqrt{2}$.

IX(h). Define right circular cylinder.

718/MH

 $(2 \times 8 = 16)$

(3)

(3)

(3)